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A model is proposed for sputter roughening of inhomogeneous systems with slowly sputtered impurity
particles randomly distributed in the bulk. Surface inhomogeneity, which develops as a result of coupling
between the time evolution of the local surface impurity concentration and the local surface shape, is tuned by
changing the dependence of the sputtering probability upon impurity concentration. In 1+1dimensions, we find
long-time scaling exponents that are consistent with Kardar—Parisi—Zhang �KPZ� values. However, for a
range of surface inhomogeneity, impurity pinning results in a persistent growth regime where the surface
roughens rapidly. We correlate this rapid roughening to fluctuations of the impurity concentration at the
surface. Roughening in this regime leads to the formation of cones whose shape is determined by material
property and sputtering flux, suggesting a unique method of nanostructure fabrication. In 2+1 dimensions, a
similar variation of the roughening behavior with surface inhomogeneity is observed. For small surface inho-
mogeneity, there is an initial exponential roughening followed by power-law roughening with an effective
growth exponent much smaller than KPZ. For larger surface inhomogeneity two power-law roughening re-
gimes are observed, with an initial rapid roughening that crosses over to slower roughening; the effective
exponent in each of these regimes increases with surface inhomogeneity. The surface morphology observed in
the simulations is considerably noisier than experimental data for InP and GaSb. Our model shows noisy
nonlinear pattern formation in contrast to the marked long-range hexagonal ordering seen in experiments.
However, the scaling behavior is robust enough that roughening kinetics similar to that observed experimen-
tally can be obtained depending upon the values of inhomogeneity and the strength of the nonlinear term in the
model.
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There is considerable interest in the physics of sputtering
because of its potential for applications in quantum devices
and optoelectronics where fabricating nanostructures with re-
producible and controllable shape and size is desirable.
When an ion hits a surface the number of surface atoms
sputtered depends on the curvature of the surface �1�. This
dependence of the sputtering yield upon surface curvature
leads to an exponentially roughening instability. Competition
between this roughening instability and the smoothening ef-
fect due to surface diffusion determines the length and time
scales of the growth dynamics of the nanostructures formed
during sputtering. This basic understanding of sputter rough-
ening has been refined by the inclusion of nonlinear effects
and noise, leading to the use of the Kuramoto-Sivashinsky
�KS� equation to describe the evolution of the topography of
the surface �2–6�.

Thus far, theoretical descriptions of sputter roughening
have focused upon homogeneous surfaces where the sputter
yield is dependent only upon the surface shape but not upon
the identity of the surface atoms. On the other hand, sputter-
roughening experiments have been reported for systems with
more than one atomic species �7–12�. Even though the long-
time roughening behavior in these systems can be reasonably
understood using the KS equation, there appears to be an
initial rapidly power-law roughening regime that is not con-
sistent with the KS equation. Furthermore, the shape of the

nanostructures formed is lenticular in single-species systems
such as silicon �13,14�, germanium �15�, and iron �16�, but
conical in mixed systems such as InP �7� and GaSb �8�.
Generally, mixed systems roughen significantly more rapidly
than single-species systems, leading, to a much larger ratio
of roughness to the number of sputtered layers �7–9,13,14�.
For example, in otherwise similar experiments the roughness
of a Si�100� surface is about 7 nm after sputtering off 50 �m
�9�, but GaSb has a roughness of about 30 nm after only
500 nm of sputtering �8�.

As a step toward addressing sputtering dynamics in sys-
tems with more than one species we propose a theoretical
description of sputtering in an inhomogeneous system by
considering sputter roughening in a solid that consists of
randomly distributed impurity atoms embedded in a substrate
that sputters off faster than the impurity. We are interested in
the evolution of a surface where in addition to the surface
shape dependence the sputtering yield also depends upon the
atomic or molecular species; i.e., given the same amount of
energy imparted to the surface atom the probability of a suc-
cessful sputtering event varies from one species of particles
to another. When an impurity atom is “uncovered” by sput-
tering it pins the surface until it diffuses away or is finally
sputtered away. The rate at which impurity atoms in the bulk
are uncovered by sputtering depends upon the local surface
curvature and, conversely, the evolution of the surface shape
is affected by impurity pinning. Thus, pinning due to an im-
purity atom leads to a local surface curvature that is more
negative than the neighboring parts of the surface. This pro-*Corresponding author. chmkhc@nus.edu.sg
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vides the physical basis for the coupling between the surface
impurity concentration and the surface shape.

We propose a model to describe the pinning by coupling
the surface height evolution to the surface impurity “concen-
tration” evolution. Results of numerical simulations are pre-
sented to show that the shape and growth kinetics of the
nanostructures that are formed depend upon both material
properties and sputtering flux. This suggests the possibility
of tuning the shape and size of nanostructures formed
through sputtering. To provide a motivation for the model,
we start by considering the Kuramoto-Sivashinsky equation

�h

�t
= ��2h +

�

2
��h�2 − � − ��4h + � . �1�

The first and second terms describe the surface-shape depen-
dence of the local sputtering yield, the third term � is the
constant average erosion rate, the fourth term is the surface
diffusion contribution, and the final term is the
�-function-correlated noise that models the stochastic nature
of the sputtering impact:

���x,t�� = 0, �2�

���x,t���x�,t��� = D�d�x − x����t − t�� . �3�

D is the magnitude of the noise, and d is the dimension of the
surface. We study only the d=1 case in this paper.

The general approach in converting a microscopic model
to a continuum one is clear even if the rigorous mathematical
derivation is frequently intractable. The master equation is
approximated by the Fokker-Planck equation through a
Kramers-Moyal expansion. Then the Langevin equation is
obtained. Along the way it generally has to be presumed that
the discrete height variable that determines the transition
rates in the master equation can be replaced by an appropri-
ate continuous variable. This is usually done through an ex-
pansion in powers of the lattice constant. The same proce-
dure would have to be applied to the impurity concentration
here, a procedure that typically is not trivial in microscopic
models of surface roughening. Here we propose some heu-
ristic but physically motivated modifications to the KS equa-
tion to couple the evolution of the surface height to the evo-
lution of the impurity surface concentration. The model we
study is described by

�h

�t
= f�m����2h +

�

2
��h�2 − �	 − ��4h + � , �4�

�m

�t
= g
−

�h

�t
�m

�h

�t
+ �m�2m + �m. �5�

The factor f�m� accounts for the effect of an atomically in-
homogeneous surface upon the sputtering yield. It models
the dependence of the local sputtering yield �described by the
first three terms in the KS equation� upon the variable m
which describes a generic �coarse-grained� impurity “con-
centration,” possibly an atomic species or defect or an order
parameter that affects the sputtering probability. In our work
we use f�m�= e−�m

e−�m+e�m where m ranges from +	 to −	 with
m=0 corresponding to the bulk value of the impurity con-

centration, although other similar functions of m would also
be appropriate. The bulk value of m is set to zero for sim-
plicity since the focus is on departures from the bulk concen-
tration. The functional form of f�m� with unbounded values
of m is convenient compared to a form that has upper and
lower bounds on m for numerical stability. The factor g�x� is
the Heaviside function of x. The noise term �m is also
�-function correlated with the same noise magnitude as
�—that is,

��m�x,t�� = 0, �6�

��m�x,t��m�x�,t��� = D�d�x − x����t − t�� . �7�

We choose this as the correlation in m in order to model a
bulk that has a randomly distributed impurity, �m simulating
the effect of impurities “surfacing” at random positions on
the surface as the particles above them are sputtered away.
The time-averaged value of �m for each position is set to
zero since this is the average impurity concentration in the
bulk. There is clearly a difference between this model for
sputtering impurity noise and systems such as GaSb and InP.
In these latter systems, the two species are found in ordered
arrays. This ordering might be better represented by a spa-
tially ordered noise term.

The parameter � controls the degree of inhomogeneity of
the surface with respect to the probability of sputtering.
When � is zero, the sputtering yield is independent of m, the
sputtering probability is independent of the species, and the
height evolution equation reduces to the Kuramoto-
Sivashinsky equation. When � is large, the sputtering prob-
ability varies rapidly when m changes sign. Where the sur-
face impurity concentration is larger than the bulk �positive
m�, we expect the sputtering probability to go rapidly to zero
as m increases, thus pinning parts of the surface. The evolu-
tion of these parts of the surface is governed by only the
Mullins diffusion and noise terms. Indeed, when the param-
eter � is infinitely large, Eqs. �4� and �5� decouple and the
height evolution is controlled by the linear molecular beam
epitaxy �MBE� equation. We discuss this limit again below.

The first term in the evolution equation for m is motivated
as follows: at points on the surface where the local velocity
is negative, the variable m is driven towards zero �the bulk
value for m� at a rate that depends upon the local sputtering
velocity. The higher the local sputtering velocity, the more
rapidly m is driven towards the bulk value of zero. The sec-
ond term accounts for “concentration” driven surface diffu-
sion of m. There can be additional nonlinear corrections to
the diffusion of m. For instance, since the amount of energy
delivered per unit local surface area depends upon the slope,
the diffusivity of m is expected to depend upon the gradient
of h. This will introduce an additional coupling between m
and h that is not due to the sputtering probabilites of the two
different species. The diffusion coefficient of m can also de-
pend upon the local impurity concentration itself; this would
be relevant when the lateral interaction between the impurity
atoms is important. We discuss these additional terms below.
The third term in the evolution equation for m models the
random distribution of the impurity in the bulk. The model is
simulated using fourth-order Runge-Kutta integration.
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Results showing the dependence of roughness 
h= ��h2�
− �h�2�1/2 upon the number of sputtered layers are plotted for
two different impurity diffusivities �m=1.0 and �m=0.1 in
Figs. 1�a� and 1�b�, respectively. Our simulations are carried
out with periodic boundary conditions on lattices of size
5000 units. The number of simulation runs for each � is
indicated in brackets in the figures. At early times, roughness
increases almost linearly with time. For small �, meaning
that the local sputtering probability is not strongly dependent
upon the impurity concentration, the initial roughening re-
gime quickly crosses over to a slower roughening regime.
With � equal to zero, the roughening exponent � decreases
to approximately 0.22 and 0.23 for �m=1.0 and �m=0.1, re-
spectively. These estimates are best-fit exponents obtained
using the average roughness of 20 simulation runs each. This
slow-roughening regime is reached even at a low roughness
of only approximately 3 units. However, as � increases, the
growth exponent for this slow-roughening regime increases
until ��1. For the higher surface diffusivity of m where
�m=1 �Fig. 1�a��, a growth exponent of ��1 is reached

when � is approximately equal to 5, whereas for the lower-
diffusivity case where �m=0.1 �Fig. 1�b�� this is reached
when � is approximately equal to 2.75, indicating that for
lower impurity diffusivity, the onset of rapid roughening re-
quires a smaller local sputtering inhomogeneity.

For �=5.5, rapid roughening is observed for roughness
�number of sputtered layers� up to 103 �104� with impurity
diffusivity �m equal to 1. With �m equal to 0.1, rapid rough-
ening is also observed over a similarly large range of rough-
ness and number of sputtered layers for � approximately
2.5–3.5. It is clear that for large and for small � values, the
rapid-roughening regime crosses over to a regime with a
smaller value of � at sufficiently long times. However, the
long-time behavior for intermediate � values is not as clearly
established in the simulations. For � values between approxi-
mately 5 �2.5� and 6 �3.5� with �m=1.0 �0.1� the rapid-
roughening regime is apparent until close to the ends of the
simulations. For these intermediate � values the regime
where the roughening crosses over to smaller � is too short
to definitively quantify the growth exponents. Longer simu-
lations on larger lattices are probably needed to address this
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FIG. 1. �a� and �b� Roughness 
h is plotted versus the average number of layers sputtered off for different � values with �, �, �, and D
all equal to 1, � equal to 5, and the bulk impurity concentration equal to 0.005. The diffusivity of the impurity is controlled by �m which is
set equal to one in �a� and 0.1 in �b�. These results are obtained from simulations with system size of 5000; the number of simulation runs
for each � is indicated in the brackets. The inset shows the average fraction of the surface with negative m—that is, parts of the surface
where the impurity concentration is lower than the bulk impurity concentration. In �c� and �d�, the abscissa is time instead of the average
number of layers sputtered. The linear rapid-roughening regime is observed and the asymptotic growth exponents are the same as in �a� and
�d�. The trendlines have slopes equal to 1 and 1/3.
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issue. The long-time slow-roughening regime is accessible in
our �m=1.0 �0.1� simulations for � larger than approximately
6 �3.5� and appears to have a Kardar-Parisis-Zhang �KPZ�
exponent. For �m=1.0, the growth exponent is approximately
0.34 for �=20.0 �see Fig. 1�a��, while for �m=0.1 the ob-
served growth exponents are 0.40, 0.35, and 0.34 for � equal
to 4.5, 5.5 �not plotted�, and 6.5, respectively, at the ends of
the respective calculations �Fig. 1�b��. Our results show that
there is an intermediate-time growth regime where the

growth exponent changes from approximately 1/4 to unity
as � increases from zero. For � values in a range that de-
pends upon the value of the impurity diffusivity �m, this
rapid roughening can persist for roughness up to 103. At long
times there is a crossover to the KPZ growth exponent, ob-
servable in our simulations at least for large �.

We have examined the dependence of surface roughness
upon the average number of sputtered layers. It is, however,
not clear that the average number of sputtered layers is lin-

FIG. 2. The height-height correlation versus lateral length is plotted in �a� for a number of different � values. In �b�, �c�, �d�, and �e� the
time dependence of this height-height correlation for specific � values is shown. The two trend lines correspond to roughening exponents of
1 and 1/2. Note that the slope of the correlation as plotted is twice the roughening exponent �.
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early proportional to time in the two-field model studied
here. Thus, we plot the roughness as a function of time in-
stead of the number of sputtered layers in Figs. 1�c� and 1�d�.
The data in Fig. 1�c� �1�d�� correspond to those plotted in
Fig. 1�a� �1�b��. The same asymptotic growth exponents are
obtained. In addition, a linear dependence of the roughness
upon time is also observed for the rapid-roughening regime
discussed above.

The height-height correlation on the surface is studied us-
ing the quantity g�r�=
h

−2��h�r0�−h�r+r0��2�, where the av-
erage is computed over all positions r0. In Fig. 2�a� we plot
the correlation function g�r� at the end of the simulations for
some values of �. In Figs. 2�b�, 2�c�, 2�d�, and 2�e� we plot
this correlation at different times for � equal to zero, 3.5, 6.0,
and 10.0, respectively. For short times and short lateral
length scales, the roughening exponent estimated using this
data is close to unity for all values of �. Note that, consid-
ering the definition of g�r� above, the roughening exponent is
equal to one-half the slopes obtained in these plots. This
scaling at short length crosses over to a roughening exponent
of about 0.44 for � equal to zero for length scales larger than
approximately 10. This roughening exponent gradually in-
creases with �. For � equal to 3.5, 4.5, and 6.0, � is approxi-
mately 0.5, 0.74, and 0.98, respectively. For � equal to 4.5
�not shown in Fig. 2� this roughening exponent persists up to
length scales of 103. However, with even larger values of �,
a long-time and long-length scaling regime is observed. In
Figs. 2�d� and 2�e� for � equal to 6.0 and 10.0, this is seen
for the height-height correlation obtained at the longest time
accessed in our simulations. The long-length scale regime is
observed when lateral lengths of longer than approximately
103 are considered. The roughening exponent � is approxi-
mately 0.48 in this regime, which is in good agreement with
the KPZ exponent.

We note that the long-time growth exponent accessible in
the large-� calculations is not the value expected for Mullins
diffusion although much of the surface is expected to be
higher in impurity concentration and have a time dependence
dominated by the Mullins diffusion and the noise terms. In
the inset of Figs. 1�a� and 1�b�, we plot the average number
of surface sites with negative values of m as a function of �.
Even for the largest values of � in our calculations, there are
still surface sites with negative m, and thus, have sputtering
probabilities close to unity for large � although these amount
to only 3% of the surface. Thus, the Mullins term does not
dominate the sputtering terms over the entire surface in Eq.
�4� even for the largest values of � used here. The simulation
results show that both � and � are close to KPZ values. As
noted above the surface evolution is governed by the linear
MBE equation when � is infinite and in which case Eqs. �4�
and �5� are decoupled. However, the simulation results with
our largest values of � are not consistent with linear MBE
kinetics, suggesting that the �=	 limit may be singular.

In Figs. 3�a� and 3�b� we plot the dependence of the fluc-
tuation in the surface impurity concentration 
m= ��m2�
− �m�2�1/2 upon �; Fig. 3�a� is for �m=1.0 while Fig. 3�b� is
for �m=0.1. The averages are taken over the surface at the
last iteration of the simulation results in Figs. 1�a� and 1�b�.
Comparing the results �for �m=1.0� in Fig. 3�a� to the rough-

ness plots in Fig. 1�a�, we see a correlation between the sharp
increase in 
m and the onset of rapid roughening. Both the
growth exponent � and the impurity flucturation 
m increase
sharply for � approximately equal to 5 and then decrease
gradually when � is increased to larger values. For � equal to
10 or 20, 
m is considerably smaller. A similar correspon-
dence holds for the �m=0.1 data shown in Fig. 3�b� and the
roughness plots in Fig. 1�b�.

We plot in Figs. 4�a�–4�d� the surface profiles for �=6.0
and zero. Figures 4�a�–4�c� are surface profiles correspond-
ing to the �=6 results plotted in Fig. 1�a�, while Fig. 4�d� is
for the �=0 data in Fig. 1�a�. Note the relative scales of the
horizontal and vertical axes. In Fig. 4�d� for � equal to zero,
we include an inset where the scales for the horizontal and
vertical axes are the same in order to illustrate the curvature
of the structures at the surface. The surface structures for �
=6 are distinctly conical and have large roughness, while
those observed for �=0 are more rounded and have much
lower roughness. To illustrate the relationship between the
surface structure and the variation of the local surface impu-
rity concentration, we plot in Fig. 4�a� the surface profile and
the concentration parameter m at early times �number of
sputtered layers is 100� for �=6.0. This is in the top left
panel. Parts of the surface where m is large, implying a high
concentration of the impurity, have curvatures that are more
negative than average. This correlation decreases with time
as illustrated in the bottom left panel of Fig. 4 for 1000
sputtered layers.

The correlation between the dependence of the fluctuta-
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FIG. 3. Here we plot the dependence upon � of the fluctuation

m in surface impurity concentration. �a� is for �m=1.0 while �b� is
for �m=0.1, corresponding to the roughness time-evolution shown
in Figs. 1�a� and 1�b�, respectively. These graphs show the correla-
tion between the onset of rapid-roughening, seen in Fig. 1, and large
surface fluctuation in impurity concentration when � is increased
from zero.
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tions in m upon � shown in Fig. 3�a� and the change in the
roughening kinetics with � shown in Figs. 1�a� and 1�b� can
be understood as follows. If a small fluctuation in the impu-
rity occurs at a point on the surface, the local curvature there
becomes negative because of the lower probability of a suc-
cessful sputtering event. The negative curvature then reduces
the local sputtering rate further because of the surface curva-
ture dependence of the sputtering dynamics. Conversely, a
point with a low local concentration of the impurity is likely
to develop a positive curvature which then further increases
in curvature as a result of the curvature dependence of the
sputtering dynamics. Therefore, we think of the roughening
surface as consisting of segments of two different types, one
of which erodes rapidly and has a large positive curvature,
and the other of which erodes slowly because of impurity
pinning due to a positive fluctuation in the local concentra-
tion of the impurity. This same impurity-pinning role has
been suggested for agglomerates of indium, which sputter off
less rapidly than phosphorus from InP, thereby acting as
seeding points for the observed conical nanostructures �7�.
The crucial point is that correlation rapidly develops between
fluctuations in the local concentrations of the impurity and
the local surface curvature.

Our simulations are for d=1+1, but our argument for the
kinetics in the rapid-roughening regime is independent of
dimension. Thus, in d=2+1, we also expect a growth expo-
nent in the rapid roughening regime that is close to 1. To
investigate this we carried out calculations for the d=2+1

case. System sizes of 400
400 are used in the calculations.
In Fig. 5�a� roughness is plotted against the number of sput-
tered layers for �=0, 5, 7.5, 10, and 15, all with the coeffi-
cient of the nonlinear term � set equal to 1. As in the d=1
+1 simulations, there is an initial rapid-roughening phase
when the surface is atomically smooth. We observe a cross-
over to a slow-roughening regime for all � values. Consid-
ering first the case of � equal to zero, the results in Fig. 5�a�
show that the initial rapid roughening is not power law but
can appear to have a time dependence that is exponential. If
we estimate the �effective� growth exponent in the slow-
roughening regime, we obtain a value of less than 0.1 for
�=0. Since the time-evolution equation reduces to the KS
equation for � equal to zero, this result suggest that the long-
time growth exponent for the KS equation in d=2+1 is sig-
nificantly below the KPZ value. This kinetic behavior is con-
sistent with what is known about the KS equation—that is,
rapid initial roughening followed by a long intermediate re-
gime with Edwards-Wilkinson scaling before KPZ scaling is
observed exponentially �2,4�. It is also consistent with our
previous rather different Monte Carlo simulations of an ato-
mistic model which found that sputter roughening scales
logarithmically at sufficiently large times �19� and also with
recent experimental data �20�. There is, so far, no direct nu-
merical verification of the asymptotic KPZ scaling for d=2
+1, although there is analytical �21� and direct numerical
evidence �4,22� for d=1+1. Our calculations here are not
able to access large values of roughness and, therefore, the
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results do not even probe the intermediate logarithmic scal-
ing for d=2+1 conclusively.

It is clearly seen in Fig. 5�a� that as � increases the ob-
served growth exponent increases, as was observed above for
d=1+1. When � is increased to 15, the initial roughening
regime has a growth exponent of approximately 0.95; this
crosses over to a regime with a growth exponent of approxi-
mately 0.39. We check for finite-size effects using calcula-
tions with a system size of 800
800 for �=10. The data for
both 800
800 and 400
400 agree very well up the rough-
ness simulated. In order to examine this crossover in rough-
ening kinetics, we plot the evolution of the fluctuation 
m
against the number of sputtered layers in Fig. 5�b�. As in the
d=1+1 case, the long-time value of 
m increases as � in-
creases; for the range of � we investigated this increase in
the fluctuation of m is correlated with the increase in the
growth exponent. We also note that the initial rapid increase
in the fluctuation of m is correlated with the initial rapid
roughening. The crossover to a smaller growth exponent oc-
curs when the growth of 
m slows down. Thus, as in d=1
+1, we observe an interesting correlation between the impu-
rity concentration fluctuation and the roughening kinetics.
There is a clear dependence of the observed growth expo-
nents upon the surface inhomogeneity.

To provide further characterization of the surface profiles
in the model, we plot in Fig. 6 the surface profiles for the
d=2+1 simulations for different �, corresponding to the re-
sults in Fig. 5�a�. The corresponding height-height correla-
tions quantified through g�r� are plotted in Fig. 7. No distinct
power-law behavior is observed. The roughness observed in
all our d=2+1 simulations is not large as compared to the
d=1+1 simulations. However, we have not explored the pa-
rameter space for the d=2+1 model as much as we have
done for the d=1+1 model. It is important to note that the
surface profiles obtained in both the d=1+1 and d=2+1
simulations of the model are noisier than the surfaces ob-
served in sputtering experiments. In Fig. 8 we plot the height
of the surfaces obtained in our simulations in gray scale. By
comparing these top view plots of the surface in the d=2
+1 simulations and the plots in Figs. 4 and 6 against the
surface profiles observed experimentally �Fig. 1 in each of
Refs. �7,8�� it is seen that the model investigated here pro-
duces a considerably more disordered surface although cel-
lular structures are observed. There is greater noise in the
height variations and is also in the in-plane variation. In par-
ticular, clearly hexagonally ordered features are observed in
Refs. �7,8�. This is also the case in Monte Carlo simulations
of a particle model for sputtering where a hexagonal symme-
try is also observed for the in-plane ordering �see Figs. 3 and
4 in Ref. �19��. In contrast, a previous numerical simulation
of the KS equation with somewhat extended simulation runs
resulted in surface profiles that are considerably noisier �23�;
no clear hexagonal ordering was observed �see Figs. 2 and
13 in Ref. �23��. This lack of in-plane ordering was also
observed in the numerical simulations by a different group
�24�. The noisy nonlinear pattern formation in these simula-
tions in contrast to the long-range order observed in sput-
tered InP and GaSb surfaces shows that the latter are prob-
ably fundamentally different from the nonlinear models
investigated.

Two growth regimes have been clearly observed in ex-
perimental data for InP sputtering �7�. Initially indium-island
agglomeration and mound coarsening occur with a growth
exponent of approximately 0.8 �7�, which is probably domi-
nated by different surface velocities of the indium-enriched
islands compared to the InP substrate. The observed growth
exponent decreases in the late stage of sputtering to a value
of approximately 0.27. Interestingly, our calculations for �
=10 �Fig. 5�a�� show almost exactly the same growth expo-
nents even though the morphologies are clearly different. It
has been suggested that the initial rapid growth corresponds
to indium accumulation and agglomeration at the surface.
When this process slows down slower roughening is ob-
served. That is, the late-time growth exponent of 0.27 is
attributed to the evolution of a surface with a fairly uniform
indium concentration. However, in our model the crossover
corresponds to a close to saturation of the surface inhomo-
geneity. Therefore, within our model the late-time roughen-
ing kinetics is due to the time evolution of a surface that is
inhomogeneous but for which the inhomogeneity is not rap-
idly changing with time as in the early time rapid-roughening
regime.

In contrast to the two power-law regimes observed for �
=10, the simulations for small � show an initial exponential
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FIG. 5. The dependence of the roughness upon the number of
sputtered layers is plotted here for d=2+1 simulations. The param-
eters used in the simulations are �, �, �, and �m all equal to 1. The
graphs are labeled with the corresponding � values. The inset of �a�
shows the same data plotted using logarithmic-linear axes. In �b�
the corresponding time dependence of the fluctuation in m is plotted
for each �.
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roughening that rapidly saturates. In particular, for � equal to
zero, we observe a short initial rapidly roughening regime
that is followed by a regime with a small growth exponent of
0.1 as discussed above. In order to better characterize the
initial rapidly roughening regime, we performed a set of d
=1+1 calculations where we reduced the coefficient of the
nonlinear term from � to 0.1. This means that the initial
linear instability is stronger and local fluctuations in surface
height are more likely to grow in amplitude. Plots of the
roughening kinetics are shown in Fig. 9�a�; the same data are
plotted with logarithmic-linear axes in the inset of Fig. 9�a�.
When the stabilizing nonlinear term is small, the initial
roughening is determined by the instability due to the nega-
tive effective surface tension in the KS equation leading to
rapid roughening as expected �2,4�. The results obtained here

for �=0.1 are consistent with this. The crossover to very
slow growth after this initially rapid-roughening regime is
also consistent with the KS equation having a long preas-
ymptotic regime where Edwards-Wilkinson behavior ��=0
for d=2+1� is observed �2,4�.

In Fig. 9�b�, we plot results of similar calculations in d
=2+1 for � equal to zero and for various magnitudes of the
nonlinear term. Since � is equal to zero, the model reduces to
the KS equation here and the results we obtain here are in
agreement with what is known about the KS equation. For
the � values investigated, the long-time growth exponent in
d=2+1 for small � is rather small as is the case for the �
=1 simulation plotted in Fig. 5�a�. The results shown in Fig.
9�b� suggest that the long-time growth exponent is not
strongly dependent upon the size of the nonlinear term but
the asymptotic value of the roughness grows as � decreases.
Thus, the initial rapidly roughening regime persists longer
for smaller � values. It is clear from the results in Figs. 9�a�
and 9�b� that the initial kinetics for small � values is not
described by a power law. The same data are plotted using
logarithmic-linear axes in the inset, showing that the initial
time dependence of roughening is also not exponential over
the entire regime. It is known for the KS equation that the
kinetics is exponential over a part of the initial roughening
regime when the nonlinear term is small. Our results are in
agreement with this since for � equal to zero, the model
reduces to the KS equation.

The results in Fig. 9�a� show that the initial apparently
exponential behavior changes to a power-law behavior when
the surface inhomogeneity �and �� is sufficiently large, thus
suggesting that in mixed systems, there is a competition be-
tween linear-instability-driven roughening and impurity-
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pinning roughening during the initial roughening stages.
Thus, our calculations show that the observed roughening
kinetics depends upon the surface inhomogeneity. The ex-
perimental roughening kinetics shows that in GaSb an initial
apparently exponential roughening occurs and the roughness
rapidly saturates. One the other hand, in InP roughening is
described by power laws both initially and for longer times
with exponents approximately 0.8 and 0.27, respectively.
Therefore, within our model, GaSb corresponds to low �
�less the inhomogeneous surface� while InP corresponds to
high �. However, as noted above, the surface morphology
observed in the model discussed here is rather different from
that observed experimentally, suggesting that the experimen-
tal systems are not described by the nonlinear model here
even though similar kinetic behaviors are observed.

We can further characterize the inhomogeneity of these
surfaces by considering the dependence of the slope distri-
bution upon �. We consider only d=1+1 here. In Fig. 10 we

plot the distribution f�s� of the slope s at long times for a
range of � values for the data shown in Fig. 1�a�. When � is
low �small inhomogeneity in the sputter probability�, the
slope distribution has a peak at zero slope. However, when �
is sufficiently large, a peak develops at a nonzero slope, as
suggested by the surface profiles in Fig. 4. Note that the peak
at a finite slope is much smaller at �=10 and �=20, as might
be expected from the roughening behavior for these � values.
It is interesting to note that at �=4.25 a small shoulder at
nonzero slope develops in the long-time slope distribution,
and by �=4.75, the peak at nonzero slope dominates the
peak at zero slope. This change in the shape of the slope
distribution corresponds to the rapid change in the value of
the impurity concentration fluctuation and the rapid-
roughening kinetics discussed above. Thus, the onset of the
rapid roughening regime is controlled by �—i.e., by how
rapidly the sputtering probability changes with the surface
concentration m. However, even though fluctuations in m

(a)

(b)

(c)

(d)

FIG. 8. Gray scale plots of the surfaces obtained in our d=2+1 simulations. The solid contours are heights below the average height
while the dotted contours are heights above the average height in each figure. The height interval between contours is 5 units for �a�, �b�, and
�c� and 10 units in �d�. A cross section of each of these surfaces is shown in the corresponding panel in Fig. 6.
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control the onset of this regime, the slope of the cones is not
strongly dependent upon �.

In Figs. 11�a� and 11�b�, we plot the slope distributions
obtained for the different � and � values keeping � constant
at a value of 7.5. These results show that the slope of the
cones is determined by the coefficient � of the nonlinear
term and the average erosion rate �. When ���� increases,
the slope of the conical structures decreases �increases�. In
the bottom panels �c� and �d� of Fig. 11, we plot the slope
distribution as a function of the rescaled slope s�� /2��1/2.
These plots show that the peaks for different � and � values
all occur at a rescaled slope of approximately 1, thus indi-
cating that the slope selected by the sputtering process is
equal to �2� /��1/2 and depends only upon the nonlinear term
and the constant average erosion rate. Thus along the straight
sides of the conical structures, the contribution of the non-
linear term exactly balances that of the constant erosion rate.

For cones with slopes smaller than �2� /��1/2, the nonlinear
term dominates the constant erosion term and the slope in-
creases, and vice versa for steeper cones. Simulations for �
=0.01 produced slope distributions that are rather similar to
those for �=1.0. Thus, at least in this range of � the selected
slope does not depend upon the effective surface tension. We
are therefore led to the interesting conclusion that the shape
of the conical structures can be selected by tuning the values
of � and �; both are linearly proportional to the incident
sputtering flux but depend differently upon how the sputter-
ing ion energy is distributed about the point of impact �2,6�.
In Figs. 12�a� and 12�b�, we plot the slope distributions for
each � value in the simulations where the nonlinear term is
reduced by setting �=0.1. The roughening kinetics is shown
in Fig. 9�a�. The distributions in Fig. 12�a� are at earlier
times, the actual number of layers sputtered for each case
being about 400. The distributions plotted in Fig. 12�b� cor-
respond to the largest value of roughness in each of the cases
shown in Fig. 9�a�. For �=7.5 the scaling exponent of close
to unity shows that impurity pinning dominates for this value
of �. A sharply peaked maximum in the slope distribution is
observed in Fig. 12�b� at a slope of 10, as we have seen from
earlier arguments. For the other values of �, the slope distri-
bution does not change significantly between 400 sputtered
layers and up to 5000 sputtered layers. In contrast to the �
=7.5 case, no peak is seen at slope s=10 although the distri-
butions show a shoulder between s=10 and s=15.

For simplicity, we have not included other possible terms
in our model. There are other effects that can play a role in
sputtering aside from the usual terms in the KS equation and
the impurity-concentration-dependent sputtering probability
that we have introduced here. For instance, with a sputtering
flux normal to the surface, the concentration of particles hit-
ting the surface is dependent upon the local slope of the
surface. This induces a thermally activated height diffusion
current proportional to the �2��h�2 �17� that is due to the
concentration gradient of the sputtering particles. This res-
cales as b�+z−4 where b is the length scale, and � and z are
the roughness and dynamic exponents, respectively. This is
expected to be less relevant than ��h�2 or �2h. However, this
nonlinear term has been included in recent work on pattern
formation in amorphous metal alloy films �17,18�. The equa-
tion used �Eq. �2� in Ref. �18�� is the KS equation with this
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FIG. 9. These figures show the effect of the nonlinear term upon
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plotted for d=1+1 for � equal to 0.1; that is, the nonlinear term is
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additional nonlinear term. By optimizing the coefficients of
the four terms in the time-evolution equation, the experimen-
tal results can be fitted well, suggesting that this nonlinear
correction to surface diffusion can be important. Earlier work
on the effect of the term proportional to �2��h�2 shows that
it stabilizes the growth of the unstable modes arising from
the linear terms in the KS equation �17�. We expect such a
term to have a similar qualitative effect as the usual nonlin-
ear term in the KS equation as in Figs. 9�a� and 9�b�; that is,
a smaller nonlinearity results in a longer time and a greater
surface roughness before the crossover to the slow-
roughening regime. Another effect that we have not consid-
ered here is the dependence of the diffusion of m upon the
local surface shape. Just as the slope dependence of the con-
centration of sputtering particles induces a height-diffusion
current, it also results in a slope dependence for the diffusiv-
ity of m, resulting in the terms ��h�2�2m and m�2��h�2. For
slopes s�1, the geometrical dependence of the surface dis-
tance upon slope also requires a correction term of the form
��h�2�2m. We also expect other terms that are nonlinear in m
to occur. For instance, if we consider interactions between
impurity particles, the time evolution of m can be described
by the Ginzburg-Landau equation along with the first term in
Eq. �5� to account for the effect of sputtering upon m.

In summary, we have presented a theoretical description
of sputtering dynamics for surfaces where the local sputter-
ing yield depends through a surface “concentration” upon
variations in the sputtering probability of the species present.
The model consists of the coupled evolution of the surface
roughness and the surface impurity concentration. The
slowly sputtered impurity is randomly distributed in the bulk
so that its distribution at the surface is solely determined by

the sputtering dynamics. Our d=1+1 results show that the
long-time scaling exponents are for � approximately 1/2 and
� approximately 1/3, for both large and small �. For the
intermediate values of � probed here, the results for the long-
time exponents are less conclusive. However, the roughening
behavior is dependent upon the degree of inhomogeneity
�tuned by the parameter � in our calculations�. For certain
values of � we find an intermediate-time rapid-roughening
regime that persists up to considerable roughness and num-
ber of sputtered layers. The range of values for � for which
this happens depends upon the diffusivity of the impurity.
The occurrence of this rapid-roughening kinetics is corre-
lated with large fluctuations of the impurity concentration. In
this regime, as a consequence of impurity pinning, both scal-
ing exponents � and � gradually increase to values close to
1. The large roughening exponent is consistent with surfaces
dominated by conical structures. We find that in this rapid-
roughening regime, the slope distribution shows a large peak
at a nonzero slope s equal to �2� /��1/2; that is, the slope can
be tuned by adjusting the flux �through the average velocity
�� and by selecting the material �through ��.

Our results show that the roughening behavior in d=2
+1 also changes similarly with �. At zero �, the kinetics is
characterized by an initial rapid-roughening regime, which
quickly saturates. The initial regime appears exponential, and
the growth exponent for the long-time slow-roughening re-
gime is significantly smaller than the KPZ value as expected.
When � is larger, the roughening behavior is characterized
by an initial rapid-roughening regime followed by a slower-
roughening regime, both of which show power-law kinetics.
The effective growth exponent in the initial regime increases
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with � to values close to 1. The largest � used in our simu-
lations is 15.0, and for this value of � we obtain a growth
exponent of 0.95 for the growth exponent in the initial re-
gime. The longer-time growth exponent also increases with
�, and we obtain a value of 0.39 for � equal to 15. The

surface morphology of the model is significantly noisier than
is found for experimental data. In particular, the clear long-
range hexagonal �statistical� order that is observed experi-
mentally is not found in our 2+1 simulations, suggesting that
a different model than the one investigated here needs to be
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FIG. 12. Plots of the slope distributions for the �=0.1 calculations shown in Fig. 9�a�. The distributions shown in �a� are at earlier times,
the actual number of layers sputtered for each case being about 400. The distributions plotted in �b� correspond to the largest value of
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considered. However, the roughening kinetics for small � is
similar to the roughening kinetics experimentally observed
for GaSb, while the behavior for large � is similar to experi-
mental results for InP. The long-time roughness reached in
our d=2+1 simulations is not as large as in our d=1+1
simulations. We think much longer simulations with large
system sizes are required to provide more definitive data on
the growth exponent in the long-time limit. In addition,
larger system sizes are probably needed to probe the rough-
ening exponent.

It is known that for the KS equation the initial roughening
kinetics can change from a power-law behavior to an appar-
ently exponential behavior in both d=1+1 and d=2+1 when
the stabilizing nonlinear term is relatively small compared to
the linear terms. Our simulations show that this exponential
behavior can be gradually changed to a power-law scaling by
increasing � �and the inhomogeneity of the surface� while
keeping the nonlinear term constant. Thus, depending upon
the values of the parameters �principally � and �� different
roughening kinetics are exhibited by our model.
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